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Abstract— Worm attacks have been major security threats to
the Internet. Detecting worms, especially new, unseen worms,
is still a challenging problem. In this paper, we propose a new
worm detection approach based on mining dynamic program
executions. This approach captures dynamic program behavior
to provide accurate and efficient detection against both seen and
unseen worms. In particular, we execute a large number of real-
world worms and benign programs (executables), and trace their
system calls. We apply two classifier-learning algorithms (Naive
Bayes and Support Vector Machine) to obtain classifiers from a
large number of features extracted from the system call traces.
The learned classifiers are further used to carry out rapid worm
detection with low overhead on the end-host. Our experimental
results clearly demonstrate the effectiveness of our approach to
detect new worms in terms of a very high detection rate and a
low false positive rate.

Index Terms— Worm detection, system call tracing, dynamic
program analysis, data mining

I. INTRODUCTION

In this paper, we address issues related to detecting worms,
especially new, unseen worms. Worms are malicious programs
that propagate themselves on the Internet to infect computers
by remotely exploiting vulnerabilities in those computers.
Worm attacks have always been considered major threats to
the Internet. There have been many cases of Internet worm
attacks that caused significant damage, such as the “Code Red”
worm in 2001 [1], the “Slammer” worm in 2003 [2], and the
“Witty/Sasser” worms in 2004 [3]. For example, in Novem-
ber 2001, the Code Red worm infected more than 350,000
computers in less than 14 hours by exploiting the buffer-
overflow vulnerability in version 4.0 or 5.0 of Microsoft’s
Internet Information Services (IIS) web server, resulting in
over $1.2 billion in damage.

After infecting a number of computers without being de-
tected, the worm attacker can remotely control thems and
use them as “stepping stones” to launch additional attacks.
Consequently, as the first line of defense against worm attacks,
worm detection research has become vital to the field of
Internet security.

In general, there are two types of worm detection systems:
network-based detection and host-based detection. Network-
based detection systems detect worms primarily by monitor-
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ing, collecting, and analyzing the scan traffic (messages to
identify vulnerable computers) generated by worm attacks.
Many detection schemes fall into this category [4]-[7]. Never-
theless, because of their reliance on scan traffic, these schemes
are not very effective in detecting worms that spread via
email systems, instant messenger (IM) or peer-to-peer (P2P)
applications.

On the other hand, host-based detection systems detect
worms by monitoring, collecting, and analyzing worm be-
haviors on end-hosts. Since worms are malicious programs
that execute on these machines, analyzing the behavior of
worm executables' plays an important role in host-based
detection systems. Mmany detection schemes fall into this
category [8], [9]. Considering that a large number of real-
world worm executables are accessible over the Internet, they
provide an opportunity for researchers to directly analyze them
to understand their behavior and, consequently, develop more
effective detection schemes. Therefore, the focus of this paper
is to use this large number of real-world worm executables to
develop a host-based detection scheme which can efficiently
and accurately detect new worms.

Within this category, most existing schemes have been fo-
cusing on static properties of executables [8], [9]. In particular,
the list of called Dynamic Link Libraries (DLLs), functions
and specific ASCII strings extracted from the executable
headers, hexadecimal sequences extracted from the executable
bodies, and other static properties are used to distinguish mali-
cious and benign executables. However, using static properties
without program execution might not accurately distinguish
between these exectuables due to the following two reasons.

« First, two different executables (e.g., one worm and one
benign) can have same static properties, i.e., they can
call the same set of DLLs and even call the same set of
functions.

o Second, these static properties can be changed by the
worm writers by inserting “dummy” functions in the
worm executable that will not be called during program
execution, or by inserting benign-looking strings [10].

Hence, the static properties of programs, or how they look,

are not the keys to distinguish worm and benign executables.
Instead, we believe the keys are what programs do, i.e.,
their run-time behaviors or dynamic properties. Therefore, our
study adopts dynamic program analysis to profile the run-time
behavior of executables to efficiently and accurately detect

'In this paper, an executable means a binary that can be executed, which
is different from program source code.

Authorized licensed use limited to: The Ohio State University. Downloaded on October 9, 2008 at 11:47 from IEEE Xplore. Restrictions apply.



new worm executables. However, dynamic program analysis
poses three challenges. First, in order to capture the run-
time behavior of executables (both worm and benign ones),
we have to execute a large number of malicious worms,
which might damages our host and network systems. Second,
given the large number of executables, manually executing and
analyzing them is infeasible in practice. Hence, we need to find
an efficient way to automatically capture programs’ run-time
behavior from their execution. Third, from the execution of a
large set of various worms and benign executables, we need
to find some constant and fundamental behavior differences
between the worms and the benign executables in order to
accurately determine whether an unseen executable is a worm
or a benign executable.

In order to address the above issues, we propose an effective
worm detection approach based on mining system-call traces
of a large amount of real-world worms and benign executables.
In particular, we set up virtual machines as the testbed
on which we execute both worms and benign executables
and analyze their execution. Since system-call tracing is an
efficient and low-overhead method for studying of program
execution dynamics, we adopt it to automatically record the
program execution, then use the segments in traced system-
call sequences as the detection features to capture executables’
run-time behavior. Considering the large volume of system-
call sequence segments traced from the large number of ex-
ecutables, we apply two data-mining classification algorithms
to learn classifiers for distinguishing worm executables from
benign ones. Then the learned classifiers are used to carry out
run-time worm detection on the end-host.

Our extensive experiments with real executables demon-
strate that our approach can achieve a very high detection
rate and very low false positive rate in detecting new worms.
Our approach is practical and has low overhead during both
classifier learning and run-time detection. It does not require
individual investigation for each executable, as it can auto-
matically generate the worm detector (a classifier) based on
existing worm sets for detection of new worms. Furthermore,
we consider preventing worm writers from abusing our worm
detection by generating a “black-box™ classifier that is dif-
ficult to interpret. Our approach is an effective and efficient
complement to other efforts in the worm detection field.

The remainder of the paper is organized as follows. In
Section II, we discuss the background of worm detection. In
Section III, we introduce the basic workflow of our approach.
In Section IV, we introduce the dataset collection process. In
Section V, we detail the extraction process of our detection
features. In Section VI, we present the detail to classify and
detect worms. In Section VII, we demonstrate the experimental
results of our detection scheme. Section VIII further discuss
some related issues. We present related work in Section IX.
Finally, we conclude this paper in Section X.

II. BACKGROUND

In this section, we give an overview of worm detection and
then introduce program analysis and data mining techniques.

A. Worm Detection

Generally, worm detection can be classified into network-
based and host-based schemes. Network-based schemes detect
worm attacks by monitoring, collecting, and analyzing worm-
generated traffic. For this purpose, Internet Threat Monitoring
(ITM) systems have now been developed and deployed [11].
An ITM system usually consists of a number of monitors and a
data center. Each monitor of an ITM system is responsible for
monitoring traffic targeted to a range of unused, yet routable,
IP address space and periodically reports the collected traffic
logs to the data center. The data center analyzes the logs and
posts summarized reports for alarming Internet worm attacks.
Based on data reported by ITM systems, many detection
schemes have been proposed [4], [5].

Host-based schemes detect worm attacks by monitoring,
collecting, and analyzing the worm behavior on end-hosts.
In particular, when a worm executes on an infected com-
puter, it may take control of the system with high privileges,
modify the system as needed, and continue to infect other
computers. These acts expose some anomalies on the infected
computers, such as writing or modifying registry keys and
system binaries or opening network connections to transfer
worm executables to other vulnerable computers. For example,
the “Blaster” worm changes a registry entry, downloads a file
named “msblast.exe”, and executes it [12].

Traditional host-based detection focuses primarily on detect-
ing worms by signature matching. In particular, these detection
systems have a database of distinctive patterns (signatures) of
malicious code for which they scan in possibly-infected sys-
tems. This approach is fast and, until recently, quite effective
to detect known worms. However, it is not effective to detect
new worms, as they have new signatures unknown to these
detection systems during the worms’ early propagation stage.
Furthermore, worm writers can use the clear worm signatures
generated or used by these detection systems to change the
signatures in order to evade detection. For example, worms
such as MetaPHOR [13] and Zmist [14] intensively metamor-
phose to hide themselves from detection, thereby illustrating
the feasibility and the efficiency of mutation techniques.

Since attackers always want to hide their malicious actions,
they do not make their attack source code publicly available.
However, the attack executables are publicly available after
the attacks are captured. Unlike classical host-based detection,
our intention is to use a large number of real-world worm
executables and further develop a generic detection scheme to
detect new worms. For this purpose, dynamic program analysis
plays an important role and is introduced in the following
subsection.

B. Program Analysis

Unlike static program analysis, dynamic program analysis
does not require the executable’s source code, but dynamic
analysis must be performed by executing the program [15],
[16]. Most dynamic program analysis methods, such as de-
bugging, simulation, binary instrumentation, execution tracing,
stack status tracking, etc. are primarily used for software-
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engineering and compiler-optimization purposes. Recently,
interest in dynamic program analysis has arisen for vulnera-
bility and “security hole”-detection purposes. However, some
dynamic-analysis approaches are only suitable for analysis of
individual executables with human expertise, such as debug-
ging, or are only fit for specific attacks [17]. For our work,
we need an appropriate dynamic program analysis method
to investigate the run-time behavior of worm and benign
executables to detect worms. The method we adopt here is
to trace system calls during the program execution, which
is a type of execution tracing. In particular, we trace the
operating system calls invoked by the programs during their
execution. This method can be used to automatically record
interesting information during execution to further investigate
executables’ behavior in the course of worm detection.

C. Data Mining

Data mining refers to the process of extracting “knowledge,”
or meaningful and useful information, from large volumes
of data [18], [19]. This is achieved by analyzing data from
different perspectives to find inherent hidden patterns, models,
relationships, or any other information that can be applied to
new datasets. It includes algorithms for classification, cluster-
ing, association-rule mining, pattern recognition, regression,
and prediction, among others. Data-mining algorithms and
tools are widely adopted in a range of applications as well
as in the computer-security field. In particular, various data-
mining technologies are adopted in different threat-detection
approaches as described in Section IX. In our work, we use
classification algorithms to differentiate between worm and
benign program execution in order to provide accurate worm
detection against both seen and unseen worms.

ITII. FRAMEWORK

A. Overview

Recall that the focus of this paper is to use a large number
of real-world worm executables and subsequently develop an
approach to detect new worms. In this section, we introduce
the framework of our system for dynamic program analysis
that detects worm executables based on mining system-call
traces of a large amount of real-world worm and benign
executables. In general, this mining process is referred to as
the off-line classifier learning process. Its purpose is to learn
(or train) a generic classifier that can be used to distinguish
worm executables from benign ones based on system call
traces. Then we use the learned classifier with appropriate
classification algorithms to determine, with high accuracy,
whether unknown executables belong to the worm class or
the benign class. This process is referred to as the on-line
worm detection process. The basic workflow is illustrated in
Fig. 1 and Fig. 2, which is subsequently explained.

(1) Collect
executables as
data source

(2) Collect dataset
—» by tracing system
calls

(4) Learn the
— classifier

(3) Extract
—» feature from
system call trace

Fig. 1. Workflow of the off-line classifier learning

(1) Trace
system call of a
new executable

(2) Extract
—>| feature from its
system call trace

(3) Classify the
—> executable with
learned classifier

Fig. 2. Workflow of the on-line worm detection

B. Off-line Classifier Learning

1) Data Source Preparation: Before we can begin dynamic
program analysis and profile the behavior of worm and benign
executables, we need to collect a large number of such
executables as the data source for our study. These executables
are labeled into two classes: worm executables and benign
executables. The worms are obtained from the Web site VX
Heavens (http://vx.netlux.org).

2) Dataset Collection—Dynamic Properties of Executables:
With the prepared data source, we discuss how to collect the
dataset, which we refer to as the dynamic properties of exe-
cutables. Recall that in order to accurately distinguish worm
executables from benign ones, we need to collect data that can
capture the fundamental behavior differences between them—
the dynamic properties. One feasible and efficient method we
choose is to run the executables and trace the run-time system-
call sequences during their execution. However, executing
worms might damage the host operating systems or even the
computer hardware. In order to solve this problem in our
experiments, we set up virtual machines as the testbed. Then
we launch each executable in our data source and record its
system-call trace during the execution on the virtual machine.
We refer to the collection of the system-call traces for each
executable in our data source as the dataset. We split the
dataset into two parts: the training set and the test set. With the
training set, we will apply classification learning algorithms
to learn the classifier. The concrete format and content of the
classifier is determined by the learning algorithms adopted.
With the test set, we will further evaluate the accuracy of the
learned classifier with respect to the classification of new and
unidentified executables.

3) Feature Extraction: With the collection dataset com-
prising system-call traces of different executables, we extract
all the system-call sequence segments with a certain length.
These segments are referred as n-grams, where n is the length
of the sequence, i.e., the number of system calls in one
segment. These n-grams can map to relatively independent
and meaningful actions taken during the program execution,
or the executables’ program blocks. We intend to use these
n-grams to capture the behaviors of common worms and
benign executables. Hence these n-grams are the features for
classifying worms and benign executables, and each distinct
n-gram represents a particular feature in our classification.

4) Classifier Learning: From the features we extract from
the training dataset, we need to learn a classifier to distinguish
between worms and benign executables. When we select the
classification algorithm, we need to consider the learned clas-
sifier’s accuracy as well as its interpretability. Some classifiers
are easy to interpret and the classification (i.e., the decision
rule of worm detection) can be easily extracted from the clas-
sifier [9]. Then worm writers can use the rules to change their
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worms’ behavior and consequently evade detection, similar to
self-mutating worms that metamorphose to defeat signature-
based detection [10]. Thus, we need classifiers with very
low interpretability. In our case, we consider two algorithms,
the Naive Bayes-based algorithm and the Support Vector
Machine (SVM) algorithm, and compare their performance.
While the Naive Bayes-based algorithm is simple and efficient
in classifier learning, SVM is more accurate. More importantly,
SVM learns a black-box classifier that is hard for worm writers
to interpret.

C. On-line Worm Detection

Having learned the classifier in the off-line process, we now
describe how it is used to carry out on-line worm detection.
In this process, we intend to automatically detect a new and
unseen executable. In particular, we follow the same procedure
as in the off-line process, in which system-call traces of an
unknown executable are recorded and classification features
(i.e., system-call sequence segments with certain lengths) are
extracted during its execution. Then the classification algo-
rithm is applied with the learned classifier to classify the new
executable as a worm or a benign program.

In fact, the aforementioned worm detection actually depends
on the accuracy of the classifier. In order to evaluate it, we
use it to classify the executables in the test set. Since we
already know the class label of these executables, we can
simply compare the classification results from the learned
classifier with the pre-known labels. As such, the accuracy
of our classifier can be measured.

In the following sections, we will present the major steps
above, i.e., dataset collection, feature extraction, classifier
learning and on-line worm detection in detail, followed by
experiment results.

IV. DATASET COLLECTION

In this section, we present the details on how we obtain the
dataset, i.e., the dynamic program properties of executables in
the form of system call traces.

A. Worm Execution with Virtual Machine

In order to study the run-time behavior of worms and
benign executables for worm detection, we need to execute
the benign executables as well as the worms. However, worms
might damage the operating system and even the hardware of
the hosts. In order to solve this problem, we set up virtual
machines (VMs) [20], [21] as the testbed. The VM we choose
is VMware [20].

Even with VMs, two difficulties can still arise during data
collection because of the worm execution. First, since worms
can crash the operating system (OS) in the VM, we might
have to repeatedly re-install the OS. In order to avoid these
tedious re-installations, we install all necessary software for
our experiments and store all our worm executables on the
VM, and then save the image file for that VM. Whenever
the VM OS crashes, we can clone the identical VM from the
image file to continue our experiment. Second, it is difficult

to obtain the system-call traces from the VM after it crashes.
In order to solve this problem, we set the physical machine on
which a VM is installed as the network neighbor of the VM
through the virtual network. Thus, during worm execution, the
VM automatically outputs the system-call trace to the physical
machine. Although the physical machine can be attacked by
the worms on the VM because of this virtual network, we
protect the physical machine with anti-virus and other security
software and impose very restrictive access controls.

B. System-Call Trace

Recall that we choose dynamic properties of executables to
capture their behavior and, more accurately, distinguish worms
from benign executables. There are multiple dynamic program
analysis methods [15], [16] that can be used to investigate the
dynamic properties of executables. The most popular methods
are debugging and simulation. However, they must be used
manually with human expertise to study program behavior. In
our case, their human-intervention requirement makes them
unsuitable for automatic analysis. Still, execution tracing is a
good method for automatic analysis, as it can automatically
record run-time behavior of executables. In addition, it is
easy to analyze the system-call trace using automatic analysis
algorithms.

There are several different ways to carry out execution
tracing. In our case, we choose to trace system calls of
worm and benign executables and use the trace to perform
classification (and hence worm detection). The reasons for
doing this are straightforward. Tracing all Microsoft Windows
Application Programming Interface (API) functions can cap-
ture more details about the run-time behavior of executables.
However, in comparison with tracing only system calls, API
tracing increases OS resource consumption and interferes with
the execution of other programs. This is because there are far
fewer system calls (311 for all the Windows version together
[22], 293 for the Linux 2.6 kernel [23]) than there are APIs
(over 76,000 for Windows versions before Vista [24] and over
1,000 for Linux [25]). Hence, we choose to trace only system
calls to facilitate “light-weight” worm detection.

V. FEATURE EXTRACTION

Features are key elements of any anomaly-based detection
or classification. In this section, we describe the method to
extract and process the features that are used to learn the
classifier and carry out worm detection.

A. N-gram from System-Call Trace

System-call traces of executables are the system-call se-
quences (time series) of the execution, which contain tem-
poral information about the program execution and thus the
respective dynamic behavior information. In our system, we
need to extract appropriate features that can capture common
or similar temporal information “hidden” in the system-call
sequences of all worm executables, which is different from
the temporal information hidden in the system-call sequences
of all benign executables.
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The n-gram is a well-accepted and frequently adopted tem-
poral feature in various areas of (statistical) natural language
processing and genetic sequence analysis [26]. It also fits
our temporal analysis requirement. An n-gram is a subse-
quence of n items from a given sequence. For example, if
a system call sequence is {NtReplyWaitReceivePort—
Ex, NtOpenKey, NtReadVirtualMemory, NtCreate—
Event, NtQuerySystemInformation}, then the 3-
grams from this sequence are {NtReplyWaitReceive-
PortEx, NtOpenKey, NtReadVirtualMemory}, {Nt-
OpenKey, NtReadVirtualMemory, NtCreateEvent},
and {NtReadVirtualMemory, NtCreateEvent, Nt-—
QuerySystemInformation}.

We use n-grams as the features in our system for the
following reasons. Imagine the difference between one line
of source code and one block of source code in a program.
The line of code provides little meaningful information about
a program, but the block of code usually represents a mean-
ingful and self-contained small task in a program, which is
the logical unit of programming. Similarly, one system call
only provides very limited information about the behavior
of an executable, whereas a segment of system calls might
represent a meaningful and self-contained action taken during
the program execution. Worm and benign executables have
different behaviors, and this difference can be represented
as the difference between their source code blocks, or the
segments (i.e., n-grams) of their system calls. Hence, we use
these system-call segments, or the n-grams, as the features
to classify worm and benign executables, which proves to
be very effective throughout our experiments as described in
Section VII.

B. Length of N-gram

A natural question is: what n-gram length is best for
classifying worms from benign executables? On one hand, in
order to capture the dynamic program behavior, n should be
greater than 1. Otherwise, the extracted 1-gram list is actually
the list of system calls invoked by the executables. This special
case is the same as the method used by static program analysis
to detect worms, which has no dynamic run-time information
of executables.

On the other hand, n should not be very large for the
following two reasons. First, if n is too large, it is very
unlikely that we will find common or similar n-grams among
different worm executables. In one extreme case, when n
becomes very large, the n-grams are no longer small tasks.
Instead, they encompass the entire execution of the programs.
Because different worms cannot have the exact same sequence
of system-call invocations (otherwise they are the same worm),
the classifier learning algorithms cannot find a common feature
(i.e., the same system-call invocations) among them, and the
algorithms cannot be used to define a class in which all the
worms are included. In this case, the classification will not
work. Second, if n is too large, the number of possible distinct
n-grams—311" for MS Windows as Windows has 311 system
calls, 293" for Linux as Linux has 293 system calls—will

be too large to to be analyzed in practice. We investigate the
impact of n-gram length on worm detection in our experiments
and report the results in Section VII.

VI. CLASSIFIER LEARNING AND WORM DETECTION

In this section, we describe the details of the last step
in the off-line classifier learning process (i.e., how to apply
the classifier learning algorithm to learn the classifier after
extracting the features). In particular, we use two classification
algorithms: the Naive Bayes algorithm, which is a simple
but popular learning algorithm, and the Support Vector Ma-
chine (SVM) algorithm, which is a more powerful but more
computationally-expensive learning algorithm. We also discuss
how to conduct on-line worm detection with each of the
algorithms in detail.

A. Naive Bayes-based Classification and Worm Detection

The Naive Bayes classifier (also known as the Simple Bayes
classifier) is a simple probabilistic classifier based on applying
Bayes’ Theorem [19]. In spite of its naive design, the Naive
Bayes classifier may perform better than more sophisticated
classifiers in some cases, and it can be trained very efficiently
with a labeled training dataset. Nevertheless, in order to use
the Naive Bayes classifier, one must make the assumption that
the features used in the classification occur independently.

In our case, we use the Naive Bayes classifier to calculate
the likelihood that an executable is a worm executable (i.e., in
the worm class) and the likelihood that it is a benign executable
(i.e., in the benign class). Then, based on which of the two
classes have a larger likelihood, the detection decision is made.

1) Off-line Classifier Learning: We represent each ex-
ecutable by an m-dimensional feature vector, X =
(z1,22,...,Zm), Where m is the number of distinct n-grams
in the dataset, z; (i = 0,...,m — 1) is the i*" distinct n-gram
such that z; = 1 if x; appears in the executable’s system call
trace and x; = 0 otherwise. We have two classes: the worm
class C, and the benign class Cj. Given the feature vector X
of an unknown executable, we need to predict which class X
belongs to. The prediction is done as follows. First, for each
class, we calculate the likelihood that the executable belongs
to that class. Second, we make a decision based on the larger
likelihood value, i.e., the executable belongs to the class that
has the larger likelihood.

Actually, the off-line “classifier” learning process of the
Naive Bayes algorithm is the preparation for the calculation
of the above two likelihoods. In particular, this preparation
is the calculation of some statistical probabilities based on
the training data. These probabilities comprise the posterior
probability of each n-gram—say, x;—conditioned on each
class, C',, and Cj. Hence, the off-line “classifier” learning
process in our Naive Bayes classification actually is the
calculation of P(z;|C;) ¢ =1,...,m,j = w or b based on
the training dataset.”

2In some implementations, the classifier learning based on the Naive Bayes
algorithm may conduct extra procedures, such as selection of features and
cross-validation, but they are not the core procedures for the Naive Bayes
algorithm.
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2) On-line Worm Detection: During the on-line worm de-
tection, for each unknown executable, the feature vector X for
that executable is built first. Then we predict that X belongs
to the class that has a higher posterior probability, conditioned
on X. That is, the Naive Bayes classifier assigns an unknown
sample X to the class C; if and only if

P(C;|X) > P(Cy|X), where j, k=worb,j #k. (1)
Based on Bayes’ Theorem, P(C;|X) can be calculated by
PXI|C5) P(C5)

PX)
In order to predict the class of X, we will calculate
P(X|C;)P(C;) for j = w or b and consequently compare
P(Cy|X) to P(Cp|X). Now we discuss how to calculate
P(X|C;)P(C};). First, if the class prior probabilities P(C,,)
and P(Cj) are unknown, then it is commonly assumed that the
classes are equally likely, i.e., P(C,,) = P(C}). Otherwise,
P(C;) can be estimated by the proportion of class C; in the

dataset. Second, as we assume the features are independent,
P(X]|Cj) can be calculated by

P(GjIX) = 2

P(X|Cy) = [[ P(=ilCy), 3)
=1

where P(x;|C};) can be calculated during the off-line classifier
learning process.

3) Discussion: The Naive Bayes classifier is effective and
efficient in many applications. The theoretical time complexity
for learning a Naive Bayes classifier is O(/Nd), where N is
the number of training examples and d is the dimensionality
of the feature vectors. The complexity of classification for an
unknown example (an unknown executable in our case) is only
O(d).

However, the Naive Bayes classifier has two limitations
in our case. First, worm writers can use it to make worm
detection less effective for new worms. In our approach, it
includes a set of probabilities that the n-grams appear in
each class. Worm writers can directly use this information to
make new worms similar to benign executables by either using
or avoiding certain n-grams (system-call sequences). Second,
high accuracy of the Naive Bayes classifier is based on the
assumption that the features are independent of each other.
However, in reality, the n-grams in the system-call trace of
an executable may not be independent. In order to address
these problems of Naive Bayes classifier, we use the Support
Vector Machine (SVM) in our worm detection as described in
the following subsection.

B. Support Vector Machine-based Classification and Worm
Detection

The Support Vector Machine (SVM) is a type of learning
machine based on statistical learning theories [27]. SVM-based
classification includes two processes: classifier learning and
classification. Classifier learning is the learning of a classifier
or model using the training dataset. The learned classifier is
used to determine or predict the class “label” of instances

that are not contained in the training dataset. The SVM is
a sophisticated and accurate classification algorithm. It is
computationally expensive and its trained classifier is difficult
to interpret. Its outstanding accuracy and low interpretability
match our requirements for accurate worm detection and
interpretation difficulty for worm writers.

1) Off-line Classifier Learning: A typical SVM classifier-
learning problem is to label (classify) N training data
{x1,...,xn} to positive and negative classes® where x; € R
(. =1,...,N) and d is the dimensionality of the samples.
Thus, the classification result is {(x1,%1),..., (XN, UN)}s
y; € {-1,+1}. In our case, x; is the feature vector
built for the i*" executable in our dataset. That is, x; =
{i1,...,%ia}, where d is the number of distinct n-grams,
z;j (j=1,...,d) is the j*" n-gram, x; ; = 1 if x; ; appears
in the 7' executable’s system call trace and z; = 0 otherwise.
y; = —1 means that x; belongs to the worm class and y; = +1
means that x; belongs to the benign-executable class.

There are two cases for the SVM classifier learning prob-
lems:

1) The samples in the two classes are linearly separable;
2) The samples in the two classes are not linearly separable.

Unfortunately, case (2) holds for most real-world problems.
In the SVM, in order to learn an optimal classifier, the non-
linearly-solvable problem in case (2) must be transformed into
a linearly-solvable problem in case (1) first. Then the optimal
classifier can be learned through linear optimization [27], [28].
In the following, we first present the algorithm for case (1)
followed by the algorithm for case (2).

a) Classes are linearly separable: If the two classes are
linearly separable, then we can find a hyperplane to separate
the examples in two classes as shown in the right side of
Fig. 3. Examples that belong to different classes should be
located on different sides of the hyperplane. The intent of the
classifier learning process is to obtain a hyperplane which can
maximally separate the two classes.

Mathematically, if the two classes are linearly separable,
then we can find a hyperplane w - x + b = 0 with a vector w
and an intercept b that satisfies the following constraints:

w-x;+b > +1fory; =+1 and 4)
w-x;—b < —1fory; =—1, ®)

or, equivalently,
yi(w-x; —b) —1 <0 Vi. (6)

Examples in the training set that satisfy the above inequality
are referred to as support vectors. The support vectors define
two hyperplanes: one that goes through the support vectors
of the positive class, and the other goes through the support
vectors of the negative class. The distance between these two
hyperplanes defines a margin and this margin is maximized
when the norm of the vector w, ||w||, is minimized. When the

3The SVM algorithm can be extended to classification for more than two
classes, but the two classes are the typical and basic cases. Our problem is a
two-class classification problem.
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margin is maximized, the hyperplane w - x + b = 0 separates
the two classes maximally, which is the optimal classifier in
the SVM algorithm. The dual form of Equation 6 reveals that
the above optimization actually is to maximize the following
function:

N LN N
W(a) = Z @i~ 7 Z Z%‘%‘(Xi x;)yiy;, (D)
=1

i=1 j=1

subject to the constraint that a; > 0. The SVM algorithm can
achieve the optimal classifier by finding out a;; > 0 for each
training sample x; to maximize W («).

b) Classes are not linearly separable: In the above case,
linearly-separable classes can be optimized. However, real-
world classification problems cannot usually be solved by the
linear optimization algorithm. This case is illustrated as the
left side of Fig. 3, in which there is no linear hyperplane
(in this case, it is a straight line in 2-dimensional space) that
can separate the examples in two classes (shown here with
different colors). In other words, the required classifier must
be a curve, which is difficult to optimize.

feature 2
A

new feature 2

--- Y

feature mapping

o o . o

N

i

feature 1 new feature

Fig. 3. Basic idea of kernel function in SVM.

The SVM provides a solution to this problem by transform-
ing the original feature space into some other, potentially high-
dimensional, Euclidean space. Then the mapped examples in
the training set can be linearly separable in the new space,
as demonstrated by the right side of Fig. 3. This space
transformation in Equation (7) can be implemented by a kernel
function,

K(xi, %) = ®(x;) - D(x;), (8)

where ® is the mapping from the original feature space
to the new Euclidean space. We would only need to use
K in the classifier training process with Equation (7), and
would never need to explicitly even know what ® is. The
SVM kernel function can be linear or non-linear. Common
non-linear kernel functions include the Polynomial Function,
Radial Basis Function (RBF), and Sigmoid Function, among
others.

2) On-line Worm Detection: On-line worm detection is the
classification of new executables using the SVM classification
algorithm along with the optimal SVM classifier learned
during the previously-discussed off-line learning process.

For an unknown executable (a worm or benign executable),
its feature vector x; must be built first. The method is the
same as the aforementioned process on the executables in the
training set, i.e., the system-call trace during the execution
is recorded, then the n-grams with a certain value of n are
extracted. Afterwards, the feature vector x; is formed from
the trace of the executable using the same method as in the
off-line classifier learning process.

Recall that during the classifier learning process, the optimal
hyperplane is found. Then for a new example x;, shown as
the white circle in Fig. 3, the on-line classification checks on
which side of the optimal hyperplane x; is. Mathematically,
the classification is conducted through signing a class to the
executable by

C(xk) = sign(w - x, — b), )
where

N

w = Zaiyixi. (10)
i=1

If C'(x;) is positive, we predict that the executable is a worm.

Otherwise, we predict that it is benign.

3) Complexity of SVM: The classifier learning process
of SVM is relatively time-consuming because of the large
volume of the training set, the high-dimensionality of our
feature space, and the complexity of classifier calculation and
optimization. No matter which kernel function is used for [NV
training examples with feature vectors of dimensionality d and
Ng support vectors, the SVM classifier learning algorithm
has complexity O(N2 + N2N + NgdN). However, the SVM
classification process for each new executable is fast and
involves only limited calculations. Its complexity is O(M Ng),
where M is the complexity of the kernel function operation.
For Radial Basis Function (RBF) kernel functions, M is O(d).

VII. EXPERIMENTS

In this section, we first present our experimental setup and
metrics, and then we report the results of our experiments.

A. Experiment Setup and Metrics

In our experiments, we use 722 benign executables and 1589
worms in Microsoft Windows or DOS Portable Executable
(PE) format as the data source, though our approach works
for worm detection on other operating systems as well. We
use this data source to learn the generic worm classifier and
further evaluate the trained classifier to detect worms. The
executables are divided into two classes: worm and benign
executables. The worms are obtained from the Web site VX
Heavens (http://vx.netlux.orq); they include e-mail
worms, peer-to-peer (P2P) worms, Instant Messenger (IM)
worms, Internet Relay Chat (IRC) worms and other, non-
classified worms. The benign executables in our experiments
include Microsoft software, commercial software from other
companies and free, “open source” software. This diversity of
executables enables us to comprehensively learn classifiers that
capture the behavior of both worm and benign executables. We
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use 80% of each class (worm and benign) as the training set
to learn the classifiers. We use the remaining 20% as the test
set to evaluate accuracy of the classifiers, i.e., the performance
of our detection approach.

We install MS Windows Professional 2000 with service
pack 4 on our virtual machines (VMs). On these VMs,
we launch each collected executable and use strace for
Windows NT [29] to trace their system calls for 10 seconds.*
From the trace file of each executable, we extract the system-
call name sequences in temporal order. Then we obtain the
segment of system calls (i.e., the n-grams), given different
value of n for each executable. Afterwards, we build the vector
inputs for the classification learning algorithms.

Recall that the classification in our worm detection problem
is in a high-dimensional space. There are a large number of
dimensions and features that cannot be handled or handled
efficiently by many data-mining tools. We choose the follow-
ing data-mining tools: Naive Bayes classification tools from
University of Magdeburg in Germany [30] and svm_light
[31]. Both tools are implemented in the C language and thus
have efficient performance, especially for high-dimensional
classification problems. When we apply SVM algorithm with
svm_light, we choose the Gaussian Radial Basis Function
(Gaussian RBF), which has been proven as an effective
kernel function [19]. The feature distribution is a Gaussian
distribution. The Gaussian RBF is in the form of

2
% —x
K(xi,xj):e YlIxi —x;| ,

Y

which means Equation (8) must be replaced by Equation (11)
in the classifier learning process and on-line worm detection
process. The value of « is optimized through experiments and
comparison.

In order to evaluate the performance of our classification for
new worm detection, we use two metrics: Detection Rate (Pp)
and False Positive Rate (Pr). In particular, the detection rate
is defined as the probability that a worm is correctly classified.
The false positive rate is defined as a benign executable
classified mistakenly as a worm.

B. Experiment Results

In this subsection, we report the performance of our worm
detection approaches. The results of Naive Bayes- and SVM-
based worm detections in terms of Detection Rate and False
Positive Rate under different n-gram length (n) are shown in
Tables I and II, respectively. From these two tables, we make
the following observations.

1) Effectiveness of Our Approaches: We conclude that
our approaches of using both the Naive Bayes and SVM
algorithms correlate with detected worms at a high detection
rate and low false positive rate when the length of n-grams is
reasonably large. For example, when the length of n-grams is
5, the detection based on the SVM algorithm achieves 99.5%
detection rate and 2.22% false positive rate and the detection

4We launch the executables in the dataset for a longer time and then use a
slide window to capture traces of a certain length for the classifier training.
We found that a 10 second trace suffices to provide high detection accuracy.

based on the Naive Bayes algorithm achieves 96.4% detection
rate and 6.67% false positive rate, respectively.

We also conclude that SVM-based detection performs better
than Naive Bayes-based detection in terms of both detection
rate and false positive rate. There are two reasons for this.
First, the Naive Bayes classification assumes that features are
independent, which may not always be the case in reality.
Second, the Naive Bayes-based classification calculates the
likelihood for classifying a new executable based on the
vectors of the training set executables in the feature space.
Then it simply predicts the class of the new executable based
on the likelihood comparison. In contrast, the SVM attempts to
optimize the classifier (hyperplane) by finding the hyperplane
that can maximally separate the two classes in the training set.

2) Impacts of N-gram Length: Another important obser-
vation is the length of n-gram, i.e., the value of n, impacts
the detection performance. When n increases from 1 to 4, the
performance keeps increasing. When n further increases after
that, the performance does not increase or only marginally
increases. The reason can be explained as follows. First, when
n = 1, each n-gram only contains one system call and thus
contains neither dynamic system-call sequence information
nor executable behavior information. Actually, this special
case is that of static program analysis, which only investigates
the list of system calls used by the executables. Second, when
n is larger, the n-grams contain larger lengths of system
call sequences, thereby capturing more dynamic behavior of
the traced executables, hence increasing the detection per-
formance. This also demonstrates that our dynamic program
analysis approach outperforms the traditional static program
analysis-based approaches.

From the above observation on the length of the n-gram, we
conclude that a certain n-gram length is sufficiently effective
for worm detection. This length (value of n) can be learned
through experiments: when the increase of n does not greatly
increase detection performance gain, that n value is good
enough and can be used in practice. This method is actually
used for other n-gram based data mining applications. Further-
more, with respect to the efficiency of worm detection, the n
value should not be very large, as we discuss in Section VI.

VIII. DISCUSSIONS

In this paper, we develop a worm detection approach that
allows us to mine program execution, thereby detecting new
and unseen worms. There are a number of possibilities for
extending this work. A detailed discussion follows.

A. Classification for Different Worms

Presently, we discuss how to generalize our approach to
support classification for different worms. Recall that our work
in this paper only focuses on distinguishing two classes of
executables: worm and benign. In practice, knowledge of the
specific types of worms (e.g., e-mail worms, P2P worms) can
provide better ways to defend against them. In order to classify
different worms, the approach studied in Section VI can be
extended as follows. First, we collect the training dataset
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TABLE I
DETECTION RESULTS FOR THE NAIVE BAYES-BASED DETECTION

[ n-gram length 1T 7 [ 3 [ 4 T 5 T 6 7]
Detection Rate (Pp) 69.8% | 81.4.0% | 85.0% | 90.9% | 93.6% | 96.4%
False Positive Rate (Pr) 33.2% 18.6% 11.5% | 8.89% | 6.67% | 6.67%

TABLE II
DETECTION RESULTS FOR THE SVM-BASED DETECTION

[ n-gram length 1 7 [ 3 [ 4 [ 5 1 6 |
Detection Rate (Pp) 89.7% 96.0% 98.75% | 99.5% | 99.5% | 99.5%
False Positive Rate (Pr) 333% | 18.75% 7.14% 444% | 2.22% | 2.22%

including large number of worms labeled by their types.
Second, we use the same approach discussed in Section VI
to train the classifiers, which are capable of profiling multiple
classes according to the fypes. Third, trained classifiers are
used to determine the type (class) of an un-labeled new worm.

B. Integration of Network-based and Host-based Detection.

In this paper, our focus is the study of host-based detec-
tion and we did not consider information about the traffic
generated by the executables during the worm detection. As
we know, a worm executable will expose multiple behaviors,
such as generating scan traffic (i.e., messages that intend to
identify vulnerable computers) and conducting malicious acts
on the infected computers. Since these worm behaviors are
exposed from different perspectives, consideration of multiple
behaviors could provide more accurate worm detection. In
fact, traffic generated by worms can also be classified and
used to distinguish them from normal traffic. For instance, the
distribution of destination IP addresses in network traffic can
provide accurate worm detection through traffic analysis [7].
Hence one ongoing work is to combine the traffic logs and
system calls generated by the worms and benign executables.
The integration of traffic and system calls can learn more
reliable classifiers to detect worms.

IX. RELATED WORK

In this section, we review some existing work related to
our study including worm detection and data mining to the
security research.

As we mentioned, there are two types of worm detection
systems: network-based detection and host-based detection.
Many network-based worm-detection schemes are proposed in
the literature, which mainly focus on network traffic analysis.
For example, Jung et al. in [32] developed a threshold-based
detection algorithm to identify anomalous scan traffic gener-
ated by a computer. Venkataraman et al. and Weaver et al. in
[4], [5] proposed schemes to examine statistics of scan traffic
volume. Zou et al. presented a trend-based detection scheme
to examine the exponential increase pattern of scan traffic [6].
Lakhina ef al. in [33] proposed schemes to examine other
features of scan traffic, such as the distribution of destination
addresses. Other work studies worms that attempt to “take on”
new patterns to avoid detection [7], [34].

Similarly, many host-based detection schemes have been
proposed. For example, a binary text scan program was

developed to extract the human-readable strings from the
binary, which reveal information about the function of the
executable binary [35]. Wagner et al. in [36] proposed an ap-
proach that analyzes program executables and generates a non-
deterministic finite automaton (NDFA) or a non-deterministic
pushdown automaton (NDPDA) from the global control-flow
graph of the program. The automaton was then used to monitor
the program execution on-line. Gao et al. in [37] presented an
approach for detecting anomalous behavior of an executing
process. The central idea of their approach is that processes
potentially running the same executable should behave simi-
larly in response to a common input. Feng et al. [38] proposed
a formal analysis framework for pushdown automata (PDA)
models. Based on this framework, they studied program anal-
ysis techniques, incorporating system calls or stack activities.
Other schemes detect anomalous behavior of executables by
examining call stack information. For example, Cowan et al.
in [39] proposed a method called StackGuard to detect buffer
overflow attacks. The difference that distinguishes our work
form theirs is that we attempt to capture the common dynamic
behavioral features of worms by mining the execution of a
large number of worms.

Many articles have examined the use of data mining for
security research. Lee et al. in [40] described a data-mining
framework for adaptively building intrusion detection models.
Martin et al. in [41] proposed an approach that learned
statistical patterns of outgoing emails from local hosts. Yang
et al. in [42] proposed an approach to apply machine learning
to automatically fingerprint polymorphic worms, which are
capable of changing their appearance every time they are
executed. In our work, we use data mining to obtain the
dynamic behaviorial difference between worms and benign
executables.

X. FINAL REMARKS

In this paper, we proposed a new worm detection approach
that is based on mining the dynamic execution of programs.
Our approach is capable of capturing the dynamic behavior of
executables to provide efficient and accurate detection against
both seen and unseen worms. Using a large number of real-
world worms and benign executables, we run executables on
virtual machines and record system call traces. We apply
two data mining classification algorithms to learn classifiers
off-line, which are subsequently used to carry out on-line
worm detection. Our data clearly show the effectiveness of
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our proposed approach in detection worms in terms of both a
very high detection rate and a low false positive rate.

Our proposed approach has the following advantages. It is
practical with low overhead during both classifier learning
and run-time detection. It does not rely on investigation for
individual executable; rather, it examines the common dynamic
properties of executables. Therefore, it can automatically de-
tect new worms. Furthermore, our approach attempts to build
a “black-box” classifier which makes it difficult for the worm
writers to interpret our detection.
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